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Properties of (p, q)-differential
equations with (p, ¢)-Euler

polynomials as solutions
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Abstract. In this paper, we discuss (p, g)-differential equations
which are related to (p, g)-Euler polynomials. Also, we find a basic
symmetric property for (p, ¢)-differential equation using the generat-
ing function of (p, ¢)-Euler polynomials.
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1. Introduction

In 1991, [3] introduced the (p, ¢)-number in order to unify varied forms
of g-oscillator algebras in physics literature. Wachs and White [13] intro-
duced the (p, ¢)-numbers in mathematics literature in certain combinatorial
problems without any connection to the quantum group related to mathe-

matics and physics literature, see [2], [7], [8], [13].

For any n € C, the (p, ¢)-number is defined by
Pt —q"
pP—q

Thereby, several physical and mathematical problems lead to the ne-

[n]p,q =

cessity of (p, ¢)-calculus. Based on the aforementioned papers, many mathe-
maticians and physicists have developed the (p, g)-calculus in many different

research areas, see [4].
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Definition 1.1 [1], [12]. Let z be any complex numbers with |z| < 1. The

two forms of (p, ¢)-exponential functions are defined by

ep,q(2) = Zp(g) -
n=0

n
' 3

[1]p,q!
E;v,q(z) = Zq(;)i,
0 []p.q!

In [5], Corcino made the theorem of (p, ¢)-extension of binomials coefli-
cients and found various properties which are related to horizontal function,

triangular function, and vertical function.

Definition 1.2 [5]. Let n > k. (p,q)-Gauss Binomial coefficients are
defined by

where [n]pq! = [n]pq[n —1pq - [Upq

Definition 1.3 [1], [12]. (p, ¢)-derivative operator of any function f, also

referred to as the Jackson derivative, is defined the as follows:

f(pr) — f(qz)

(p—qz 270,

Dp,qf(x) =
and D, ,f(0) = f'(0).

Let p =1 in Definitionl.3. Then, we can remark

fz) = flgz)

(1-qz ~ 70,

qu(x) =
we call D, is the g-derivative.

Theorem 1.4 [1], [9]. The operator,D,, , has the following basic proper-

ties:
i Derivative of a product

Dyq(f(2)g(2)) = f(p2)Dpg9(x) + 9(q2) Dy o f (%)

= g(pr) Dy o f (%) + f(qx) Dy q9().
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ii Derivative of a ratio

f(z) o g(qz) p,qf(m) — flq )Dp,qg(x)
Dra <g<x>) - 9(pr)g(ae)
px)Dyp o f () — f(pz )Dp,qg@).

9(pr)g(gz)

In 2016, Araci et al. [1] introduced a new class of Bernoulli, Euler
and Genocchi polynomials based on the theory of (p, ¢)-numbers and found
some properties and identities. After that, several studies have investigated

the special functions for various applications, see [6], [9], [10], [11].

Definition 1.5 [6]. (p,¢)-Euler numbers &, , , and polynomials &, , ,(x)
are defined by

oo
tn 2
Z gn»nq ! = )
n]pq!  epq(t) +1

2
En = e, q(tr).
Z P,q p q' ep,q(t) +1 p,q( )

Consider p = 1 in Definition 1.5. Then, we note

tn

> 2
nz::og"’q [y} eq(t) +17
2
)

t1’L

;&l}q(w) ]! N eq(t

where &, 4 is the g-Euler number and &, 4(x) is the ¢-Euler polynomial.

1 eq(tz),

2. (p,q)-differential equations which is related
to (p,q)-Euler polynomials

Theorem 2.1. Let n be a non-negative integer. Then, we have

Dyp,q.2€n.p.q (z) = [n}p,q‘gﬂ—l,p,q(px)
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Proof. From the generating function of (p, ¢)-Euler numbers and polyno-
mials, we find

o0
Zg,p,q :Z ,p,qn ,ZP
q!
n=0

P P q° qu

)

, Jp.a!

By comparing the coefficients of both sides in the above equation, we have
a relation as

"~ [n neky
Enp,q(T) = Z [k:| p( )z kgk’p,q- (1)
P.q

Using the g-derivative in Equation (1), we obtain as the follows

(1 3

n n—k n—k—
Dpﬁg,rgn’P’Q(x) = Z |:k:| [n— k]lhqp( 2 )x g 1‘Cjk,p,q
P,q

k=0
n—1

o [ ] HE en

k=0

)

From the above equation, we complete the proof of Theorem 2.1. [

Corollary 2.2. Let k be a non-negative integer and 0 < p/q < 1. Then
the following holds

(5) |
P\ [n]y 4!
D;(o]fg,xgmnq(x) e a—

)

Theorem 2.3. The (p,q)-FEuler polynomial is a solution of the following
(p, q)-differential equation:
1
[n]p.q!

|

1

[2] |D1(7?(3,mg”apaq(p Qx) + D;g,wg n,p, q(p 1]}) + g apaq(p 1'7:)
p,q*

+Enpglz) — 2p(2)x” =0.

1
ngnt])wgn’p’q(pnx) + Dz(j"q F ,p,q(p_(n_l)gg) N
4, [n— 1], Po®

+
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Proof. We suppose that e, ; # —1 in the generating function of the (p, g)-

Euler polynomials. Then, we have

isn,p,q(a:) & <§:p(§) & +1>
n=0 n=0

(n]p.q! [n]p.q!
=23 e o @)
n=0 pq

The left-hand side of the Equation (2) is transformed as

> t" >N () "
>l (LA 1)

P4 \n=0

-2 (x[]

k= p.q

) € pa(a) + 5n,p,q<x>> Tt

p.q-

By using the above equation in Equation (2), we obtain

n

Z |:Z:| p(g)gnfk,p,q(x) = 2]9(2)35” — Enpya(T)- (3)

k=0

From Corollary 2.2, we find a relation between

gnfk,p,q(x)
and
D;S;]fg,mgn,pyq(x)
as
n—Elpq!
En—hpq(Pr) = T’“’Dzﬂ’fﬁ,x&,p,q(x)- (4)
p\2) [n]p 4!

Substituting the Equation (4) in (3), we have

n
n

: B n
Z [k]p q! 1(7]3@511,177(1(17 kl‘) + 5n,p,q($) _ 2p(2)x -0
k=0 ,

From the above equation, we obtain the required result. O
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Corollary 2.4. Set p =1 in Theorem 2.3. Then, the following holds

1 1
DMe, -
a1 Do Ena®)

DV E, o () +

1
+ G DirEna(@) + DiE (@) + 2ny(e) = 20" =0,
.

where [n], is the g-number, D, is the g-derivative, and &, q(x) is the g-Euler

polynomial.
Theorem 2.5. For a # 0, 8 # 0, we have the following:

B"np.a(BY) (n “n
[n] L q'p(;) Dz(m),wgnﬁp’q(a b x)
p,q

n—l(c/'n_
+/8 1=P7q(/8n ) 1()77Lq71)g ,pq(a p —(n— 1)1')4_...
a ln—1],, p( 2)

-1
a0 by oty S B
al—n ’ a™ " 7
e} Snpq(a 1y) (n) 1 -
= —2kd " _Z pn) g "

], o) 7" palPP)

Oln_lgnfl,P"Z(a_]}f)D(n—zl)
B=tn — 1]p7q!p( =)
a517p’q(a_1y)

_ Eop.qlaly _
+T 1(72, € ’P’Q(B 1 ' )+W5n,p,q(5 133)-

fn,p,q(ﬂ_ p—(n—l)x) 4o

Proof. To find a basic symmetric property of (p, ¢)-differential equation

related to (p, ¢)-Euler polynomials, we consider a form A as

A= dep,q(tz)ep,q(ty)
 (epglat) +1) (epq(Bt) +1)

By applying (p, ¢)-Euler polynomials in form A, we derive

NE

ES
Il

0

e el
p,q

= |:Z:| O‘kﬂnikgk,p,q(aily)é‘n—k,p,q(ﬂilx)-
p,q

k=0 ,
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The above equation can be transformed as

=

g 5, L
Z k;nq (ziD;z(alfq,xgn,P,q(a lp ka)

k= Oa ]pq'P

o gkpq 'y) (k) 1=k
Sy DY) Enpa (87 ).
ko BF [k ]p,q'P(Q) i

Therefore, we find the desired result.

Corollary 2.6. Set p =1 in Theorem 2.5. Then, the following holds

L
bt BB W pie, (om0 D0 W g (0t

_ O‘M(,) DE(872)

4ot Wpé};gw(glx) + goﬂﬁ(ojn y) Enq(B7 ),

where &, 4(x) is the g-Euler polynomial.

Corollary 2.7. Putting o = 1 in Theorem 2.5, the following holds

ﬂngn,p,Q(ﬂily)
[n]p,q!p(Q)
B 1p0(B71Y) e —(n—
[n 1]1p']q)(n51) D1(97q7f3)€n7p7q(p ( 1)39)
- tip,q-

+oe Tt ﬂglypyq(/j_ly)Dz(al; mgn,p,q(p_lx) + gO,p,q(B_ly)gn,p,q(x)
_ & 7:07!1( ) D(n) (ﬁ 1 —n )

P,q,T n,p,q
1p(3)

D;(;th),zgmp,q(pinx)

+

(n]p.q

gnfl, s (y) — 1 —(n—
" B=1n qu 'p(”El)Dqu’;) palA7P " l)x)
— Lp,q!

E1p. _ Eo.p.a(y _
oot lﬂﬁqi)Dz(nl 2Enpq(B” 1 ! T) + 05_(175 )gn»p,q(ﬁ 193)~
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Theorem 2.8. A solution of the (p, q)-differential equation is given by

né‘n 1 n —n nt gn— 1 n— —n
I)(,L),IW()DI()7‘I)7$57L1P1Q(p1 x) + p(hf?) 17p7q( )DI(’vqﬂcl)g”aP,q(pZ x)
P2/ [nlpq! L2 =1
+oee +pq”*l517p7q(1)D1()27m5n7p7q(m) + (£0,p,4(1) = 29)q"En p.q(p)

+28n11,p49(qx) =0

is the (p, q)-Fuler polynomials.

Proof. By using (p, ¢)-derivative of a product and (p, q)-derivative of a

ratio in the generating function of (p, ¢)-Euler polynomials, we have

oo tn
Dy gt Zf,‘n’p’q(qx) ol

= [7]p.q!

2 2
= ep.q(PqtT) Dy g4 ( ) + ol Dy q,tep,q(qtz)
D.q

p7q( ) +1 qt) +1
2qx 2e, 4(pt) )
= ey q(pqtx ( — : .
pal ) epg(qt) + 1 (epq(pt) +1)(epq(qt) +1)
and note
epglqt) +1 <= , "
epa(pate) = L= 0" En pg(p2) o
n=0 p.a:

From the above equations, we find

o0 tn
Dp,q.t Z 5n,p,q(q$) []p.q!

—Zq Enp.q(DT)
[]p

q:

: »t)
r— ———e
I ep.q(pt) +1 Pl
n tn
= Zq 2 p.qa(pr)

[]p.q!

o1 Z (Z { ] nlgl7p7q(1)5n_l7p7q(pa:)> %
=0 p,q p,q

)
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Therefore, the above equation can be changed as

Dyp.q,t€np.q (qx)

n — . n n—
= a0 =2 SO 1] (). )
=0

p,q

From Definition 1.5, we also have

Dy gtEnp.qg(qr) = Enipq(q). (6)

Combining the Equations (5) and (6), we find the following relation

i [n ne
27 Z L} g l5l7p7q(1)5n—l,p,q(pm)
=0 p:q

i

n+1

=q"" @ p,q(PT) = En—1,p,(47). (7)
From Corollary 2.2, we note that

[n—1]p,4! _
En-tpa(pr) = B DY o Enpa (0 '). (8)
p\2) [n]p 4!

Substituting the Equation (8) in (7), we derive

n plgn’pﬂl(].) (l) 11 n+1
S Dinanpa P T0) = 2 000 () = En-tpaler)):
=0 P\ [llp.q!

which obtain the required result. O

Corollary 2.9. Putting p =1 in Theorem 2.8, we have
En.q(1) 4€n—1,4(1)
]! [n — 1!

+ qn_lgl,q(l)Dz(;,la)cgn,q(m) + (€0,¢(1) = 29)q"En q(2) + 2E011,4(qx) = 0.

D) Enq(x) + DV Eng(@) + -+

where &, 4(x) is the g-Euler polynomial.
3. Conclusion

We obtained a k-order differential equation by using a relationship

between (p, ¢)-Euler numbers and (p, g)-Euler polynomials. We derived
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several higher-order differential equations with the (p, ¢)-Euler polynomial

as the solution from a relation between the (p,q)-Euler polynomials and

the k-order differential equation. We also found the symmetric structure of

higher order differential equations.
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