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equations with (p, q)-Euler
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Abstract. In this paper, we discuss (p, q)-differential equations
which are related to (p, q)-Euler polynomials. Also, we find a basic
symmetric property for (p, q)-differential equation using the generat-
ing function of (p, q)-Euler polynomials.
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1. Introduction

In 1991, [3] introduced the (p, q)-number in order to unify varied forms

of q-oscillator algebras in physics literature. Wachs and White [13] intro-

duced the (p, q)-numbers in mathematics literature in certain combinatorial

problems without any connection to the quantum group related to mathe-

matics and physics literature, see [2], [7], [8], [13].

For any n ∈ C, the (p, q)-number is defined by

[n]p,q =
pn − qn

p− q
.

Thereby, several physical and mathematical problems lead to the ne-

cessity of (p, q)-calculus. Based on the aforementioned papers, many mathe-

maticians and physicists have developed the (p, q)-calculus in many different

research areas, see [4].
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Definition 1.1 [1], [12]. Let z be any complex numbers with |z| < 1. The

two forms of (p, q)-exponential functions are defined by

ep,q(z) =

∞∑
n=0

p(
n
2) zn

[n]p,q!
,

Ep,q(z) =

∞∑
n=0

q(
n
2) zn

[n]p,q!
.

In [5], Corcino made the theorem of (p, q)-extension of binomials coeffi-

cients and found various properties which are related to horizontal function,

triangular function, and vertical function.

Definition 1.2 [5]. Let n ≥ k. (p, q)-Gauss Binomial coefficients are

defined by [
n
k

]
p,q

=
[n]p,q!

[n− k]p,q![k]p,q!
,

where [n]p,q! = [n]p,q[n− 1]p,q · · · [1]p,q.

Definition 1.3 [1], [12]. (p, q)-derivative operator of any function f , also

referred to as the Jackson derivative, is defined the as follows:

Dp,qf(x) =
f(px)− f(qx)

(p− q)x
, x 6= 0,

and Dp,qf(0) = f ′(0).

Let p = 1 in Definition1.3. Then, we can remark

Dqf(x) =
f(x)− f(qx)

(1− q)x
, x 6= 0,

we call Dq is the q-derivative.

Theorem 1.4 [1], [9]. The operator,Dp,q, has the following basic proper-

ties:

i Derivative of a product

Dp,q(f(x)g(x)) = f(px)Dp,qg(x) + g(qx)Dp,qf(x)

= g(px)Dp,qf(x) + f(qx)Dp,qg(x).
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ii Derivative of a ratio

Dp,q

(
f(x)

g(x)

)
=
g(qx)Dp,qf(x)− f(qx)Dp,qg(x)

g(px)g(qx)

=
g(px)Dp,qf(x)− f(px)Dp,qg(x)

g(px)g(qx)
.

In 2016, Araci et al. [1] introduced a new class of Bernoulli, Euler

and Genocchi polynomials based on the theory of (p, q)-numbers and found

some properties and identities. After that, several studies have investigated

the special functions for various applications, see [6], [9], [10], [11].

Definition 1.5 [6]. (p, q)-Euler numbers En,p,q and polynomials En,p,q(x)

are defined by

∞∑
n=0

En,p,q
tn

[n]p,q!
=

2

ep,q(t) + 1
,

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
=

2

ep,q(t) + 1
ep,q(tx).

Consider p = 1 in Definition 1.5. Then, we note

∞∑
n=0

En,q
tn

[n]q!
=

2

eq(t) + 1
,

∞∑
n=0

En,q(x)
tn

[n]q!
=

2

eq(t) + 1
eq(tx),

where En,q is the q-Euler number and En,q(x) is the q-Euler polynomial.

2. (p, q)-differential equations which is related
to (p, q)-Euler polynomials

Theorem 2.1. Let n be a non-negative integer. Then, we have

Dp,q,xEn,p,q(x) = [n]p,qEn−1,p,q(px).
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Proof. From the generating function of (p, q)-Euler numbers and polyno-

mials, we find

∞∑
n=0

En,p,q(x)
tn

[n]p,q!
=

∞∑
n=0

En,p,q
tn

[n]p,q!

∞∑
n=0

p(
n
2)xn

tn

[n]p,q!

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

p(
n−k

2 )xn−kEk,p,q

)
tn

[n]p,q!
.

By comparing the coefficients of both sides in the above equation, we have

a relation as

En,p,q(x) =

n∑
k=0

[
n
k

]
p,q

p(
n−k

2 )xn−kEk,p,q. (1)

Using the q-derivative in Equation (1), we obtain as the follows.

D(1)
p,q,xEn,p,q(x) =

n∑
k=0

[
n
k

]
p,q

[n− k]p,qp
(n−k

2 )xn−k−1Ek,p,q

= [n]p,q

n−1∑
k=0

[
n− 1
k

]
p,q

p(
n−k−1

2 )(px)n−k−1Ek,p,q.

From the above equation, we complete the proof of Theorem 2.1.

Corollary 2.2. Let k be a non-negative integer and 0 < p/q < 1. Then,

the following holds

D(k)
p,q,xEn,p,q(x) =

p(
k
2)[n]p,q!

[n− k]p,q!
En−k,p,q(pkx).

Theorem 2.3. The (p, q)-Euler polynomial is a solution of the following

(p, q)-differential equation:

1

[n]p,q!
D(n)

p,q,xEn,p,q(pnx) +
1

[n− 1]p,q!
D(n−1)

p,q,x En,p,q(p−(n−1)x) + · · ·

+
1

[2]p,q!
D(2)

p,q,xEn,p,q(p−2x) +D(1)
p,q,xEn,p,q(p−1x) + En,p,q(p−1x)

+ En,p,q(x)− 2p(
n
2)xn = 0.
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Proof. We suppose that ep,q 6= −1 in the generating function of the (p, q)-

Euler polynomials. Then, we have

∞∑
n=0

En,p,q(x)
tn

[n]p,q!

( ∞∑
n=0

p(
n
2) tn

[n]p,q!
+ 1

)

= 2

∞∑
n=0

p(
n
2)xn

tn

[n]p,q!
. (2)

The left-hand side of the Equation (2) is transformed as

∞∑
n=0

En,p,q(x)
tn

[n]p,q!

( ∞∑
n=0

p(
n
2) tn

[n]p,q!
+ 1

)

=

∞∑
n=0

(
n∑

k=0

[
n
k

]
p,q

p(
k
2)En−k,p,q(x) + En,p,q(x)

)
tn

[n]p,q!
.

By using the above equation in Equation (2), we obtain

n∑
k=0

[
n
k

]
p,q

p(
k
2)En−k,p,q(x) = 2p(

n
2)xn − En,p,q(x). (3)

From Corollary 2.2, we find a relation between

En−k,p,q(x)

and

D(k)
p,q,xEn,p,q(x)

as

En−k,p,q(pkx) =
[n− k]p,q!

p(
k
2)[n]p,q!

D(k)
p,q,xEn,p,q(x). (4)

Substituting the Equation (4) in (3), we have

n∑
k=0

1

[k]p,q!
D(k)

p,q,xEn,p,q(p−kx) + En,p,q(x)− 2p(
n
2)xn = 0.

From the above equation, we obtain the required result.
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Corollary 2.4. Set p = 1 in Theorem 2.3. Then, the following holds

1

[n]q!
D(n)

q,xEn,q(x) +
1

[n− 1]q!
D(n−1)

q,x En,q(x) + · · ·

+
1

[2]q!
D(2)

q,xEn,q(x) +D(1)
q,xEn,q(x) + 2En,q(x)− 2xn = 0,

where [n]q is the q-number, Dq is the q-derivative, and En,q(x) is the q-Euler

polynomial.

Theorem 2.5. For α 6= 0, β 6= 0, we have the following:

βnEn,p,q(β−1y)

[n]p,q!p(
n
2)

D(n)
p,q,xEn,p,q(α−1p−nx)

+
βn−1En−1,p,q(β−1y)

α−1[n− 1]p,q!p(
n−1
2 )

D(n−1)
p,q,x En,p,q(α−1p−(n−1)x) + · · ·

+
βE1,p,q(β−1y)

α1−n D(1)
p,q,xEn,p,q(α−1p−1x) +

E0,p,q(β−1y)

α−n
En,p,q(α−1x)

=
αnEn,p,q(α−1y)

[n]p,q!p(
n
2)

D(n)
p,q,xEn,p,q(β−1p−nx)

+
αn−1En−1,p,q(α−1y)

β−1[n− 1]p,q!p(
n−1
2 )

D(n−1)
p,q,x En,p,q(β−1p−(n−1)x) + · · ·

+
αE1,p,q(α−1y)

β1−n D(1)
p,q,xEn,p,q(β−1p−1x) +

E0,p,q(α−1y)

β−n
En,p,q(β−1x).

Proof. To find a basic symmetric property of (p, q)-differential equation

related to (p, q)-Euler polynomials, we consider a form A as

A :=
4ep,q(tx)ep,q(ty)

(ep,q(αt) + 1) (ep,q(βt) + 1)
.

By applying (p, q)-Euler polynomials in form A, we derive

n∑
k=0

[
n
k

]
p,q

αn−kβkEk,p,q(β−1y)En−k,p,q(α−1x)

=

n∑
k=0

[
n
k

]
p,q

αkβn−kEk,p,q(α−1y)En−k,p,q(β−1x).
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The above equation can be transformed as

n∑
k=0

βkEk,p,q(β−1y)

αk−n[k]p,q!p(
k
2)
D(k)

p,q,xEn,p,q(α−1p−kx)

=

n∑
k=0

αkEk,p,q(α−1y)

βk−n[k]p,q!p(
k
2)
D(k)

p,q,xEn,p,q(β−1p−kx).

Therefore, we find the desired result.

Corollary 2.6. Set p = 1 in Theorem 2.5. Then, the following holds

βnEn,q(β−1y)

[n]q!
D(n)

q,xEn,q(α−1x) +
βn−1En−1,q(β−1y)

α−1[n− 1]q!
D(n−1)

q,x En,q(α−1x)

+ · · ·+ βE1,q(β−1y)

α1−n D(1)
q,xEn,q(α−1x) +

E0,q(β−1y)

α−n
En,q(α−1x)

=
αnEn,q(α−1y)

[n]q!
D(n)

q,xEn,q(β−1x)

+
αn−1En−1,q(α−1y)

β−1[n− 1]q!
D(n−1)

q,x En,q(β−1p−(n−1)x)

+ · · ·+ αE1,q(α−1y)

β1−n D(1)
q,xEn,q(β−1x) +

E0,q(α−1y)

β−n
En,q(β−1x),

where En,q(x) is the q-Euler polynomial.

Corollary 2.7. Putting α = 1 in Theorem 2.5, the following holds

βnEn,p,q(β−1y)

[n]p,q!p(
n
2)

D(n)
p,q,xEn,p,q(p−nx)

+
βn−1En−1,p,q(β−1y)

[n− 1]p,q!p(
n−1
2 )

D(n−1)
p,q,x En,p,q(p−(n−1)x)

+ · · ·+ βE1,p,q(β−1y)D(1)
p,q,xEn,p,q(p−1x) + E0,p,q(β−1y)En,p,q(x)

=
En,p,q(y)

[n]p,q!p(
n
2)
D(n)

p,q,xEn,p,q(β−1p−nx)

+
En−1,p,q(y)

β−1[n− 1]p,q!p(
n−1
2 )

D(n−1)
p,q,x En,p,q(β−1p−(n−1)x)

+ · · ·+ E1,p,q(y)

β1−n D(1)
p,q,xEn,p,q(β−1p−1x) +

E0,p,q(y)

β−n
En,p,q(β−1x).
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Theorem 2.8. A solution of the (p, q)-differential equation is given by

pnEn,p,q(1)

p(
n
2)[n]p,q!

D(n)
p,q,xEn,p,q(p1−nx) +

pn−1qEn−1,p,q(1)

p(
n−1
2 )[n− 1]p,q!

D(n−1)
p,q,x En,p,q(p2−nx)

+ · · ·+ pqn−1E1,p,q(1)D(1)
p,q,xEn,p,q(x) + (E0,p,q(1)− 2q)qnEn,p,q(px)

+ 2En+1,p,q(qx) = 0

is the (p, q)-Euler polynomials.

Proof. By using (p, q)-derivative of a product and (p, q)-derivative of a

ratio in the generating function of (p, q)-Euler polynomials, we have

Dp,q,t

∞∑
n=0

En,p,q(qx)
tn

[n]p,q!

= ep,q(pqtx)Dp,q,t

(
2

ep,q(t) + 1

)
+

2

ep,q(qt) + 1
Dp,q,tep,q(qtx)

= ep,q(pqtx)

(
2qx

ep,q(qt) + 1
− 2ep,q(pt)

(ep,q(pt) + 1)(ep,q(qt) + 1)

)
.

and note

ep,q(pqtx) =
ep,q(qt) + 1

2

∞∑
n=0

qnEn,p,q(px)
tn

[n]p,q!
.

From the above equations, we find

Dp,q,t

∞∑
n=0

En,p,q(qx)
tn

[n]p,q!

=

∞∑
n=0

qnEn,p,q(px)
tn

[n]p,q!(
qx− 1

ep,q(pt) + 1
ep,q(pt)

)
=

∞∑
n=0

qn+1xEn,p,q(px)
tn

[n]p,q!

− 2−1
∞∑

n=0

(
n∑

l=0

[
n
l

]
p,q

plqn−lEl,p,q(1)En−l,p,q(px)

)
tn

[n]p,q!
.
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Therefore, the above equation can be changed as

Dp,q,tEn,p,q(qx)

= qn+1xEn,p,q(px)− 2−1
n∑

l=0

[
n
l

]
p,q

plqn−lEl,p,q(1)En−l,p,q(px). (5)

From Definition 1.5, we also have

Dp,q,tEn,p,q(qx) = En−l,p,q(qx). (6)

Combining the Equations (5) and (6), we find the following relation

2−1
n∑

l=0

[
n
l

]
p,q

plqn−lEl,p,q(1)En−l,p,q(px)

= qn+1xEn,p,q(px)− En−l,p,q(qx). (7)

From Corollary 2.2, we note that

En−l,p,q(px) =
[n− l]p,q!

p(
l
2)[n]p,q!

D(l)
p,q,xEn,p,q(p1−lx). (8)

Substituting the Equation (8) in (7), we derive

n∑
l=0

plEn,p,q(1)

p(
l
2)[l]p,q!

D(l)
p,q,xEn,p,q(p1−lx) = 2(qn+1xEn,p,q(px)− En−l,p,q(qx)).

which obtain the required result.

Corollary 2.9. Putting p = 1 in Theorem 2.8, we have

En,q(1)

[n]q!
D(n)

q,xEn,q(x) +
qEn−1,q(1)

[n− 1]q!
D(n−1)

q,x En,q(x) + · · ·

+ qn−1E1,q(1)D(1)
q,xEn,q(x) + (E0,q(1)− 2q)qnEn,q(x) + 2En+1,q(qx) = 0.

where En,q(x) is the q-Euler polynomial.

3. Conclusion

We obtained a k-order differential equation by using a relationship

between (p, q)-Euler numbers and (p, q)-Euler polynomials. We derived
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several higher-order differential equations with the (p, q)-Euler polynomial

as the solution from a relation between the (p, q)-Euler polynomials and

the k-order differential equation. We also found the symmetric structure of

higher order differential equations.
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